185 research outputs found

    Molecular Modelling of Oligomeric States of DmOR83b, an Olfactory Receptor in D. Melanogaster

    Get PDF
    After the discovery of the complete repertoire of D. melanogaster Olfactory Receptors (ORs), candidate ORs have been identified from at least 12 insect species from four orders (Coleoptera, Lepidoptera, Diptera, and Hymenoptera), including species of economic or medical importance. Although all ORs share the same G-protein coupled receptor structure with seven transmembrane domains, they share poor sequence identity within and between species, and have been identified mainly through genomic data analyses. To date, D. melanogaster remains the only insect species where ORs have been extensively studied, from expression pattern establishment to functional investigations. These studies have confirmed several observations made in vertebrates: one OR type is selectively expressed in a subtype of olfactory receptor neurons, and one olfactory neuron expresses only one type of OR. The olfactory mechanism, further, appears to be conserved between insects and vertebrates. Understanding the function of insect ORs will greatly contribute to the understanding of insect chemical communication mechanisms, particularly with agricultural pests and disease vectors, and could result in future strategies to reduce their negative effects. In this study, we propose molecular models for insect olfactory receptor co-receptor OR83b and its possible functional oligomeric states. The functional similarity of OR83b to GPCRs and ion channels has been exploited for understanding the structure of OR83b. We could observe that C-terminal region (TM4-7) of OR83b is involved in homodimer amd heterodimer formation (with OR22a) which suggests why C-terminus of insect ORs are highly conserved across different species. We also propose two possible ion channel pathways in OR83b: one formed by TM4-5 region with intracellular pore-forming domain and the other formed by TM5-6 with extracellular pore forming domain using analysis of the electrostatics distribution of the pore forming domain

    Cross genome comparisons of serine proteases in Arabidopsis and rice

    Get PDF
    BACKGROUND: Serine proteases are one of the largest groups of proteolytic enzymes found across all kingdoms of life and are associated with several essential physiological pathways. The availability of Arabidopsis thaliana and rice (Oryza sativa) genome sequences has permitted the identification and comparison of the repertoire of serine protease-like proteins in the two plant species. RESULTS: Despite the differences in genome sizes between Arabidopsis and rice, we identified a very similar number of serine protease-like proteins in the two plant species (206 and 222, respectively). Nearly 40% of the above sequences were identified as potential orthologues. Atypical members could be identified in the plant genomes for Deg, Clp, Lon, rhomboid proteases and species-specific members were observed for the highly populated subtilisin and serine carboxypeptidase families suggesting multiple lateral gene transfers. DegP proteases, prolyl oligopeptidases, Clp proteases and rhomboids share a significantly higher percentage orthology between the two genomes indicating substantial evolutionary divergence was set prior to speciation. Single domain architectures and paralogues for several putative subtilisins, serine carboxypeptidases and rhomboids suggest they may have been recruited for additional roles in secondary metabolism with spatial and temporal regulation. The analysis reveals some domain architectures unique to either or both of the plant species and some inactive proteases, like in rhomboids and Clp proteases, which could be involved in chaperone function. CONCLUSION: The systematic analysis of the serine protease-like proteins in the two plant species has provided some insight into the possible functional associations of previously uncharacterised serine protease-like proteins. Further investigation of these aspects may prove beneficial in our understanding of similar processes in commercially significant crop plant species

    Evolutionary traces decode molecular mechanism behind fast pace of myosin XI

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cytoplasmic class XI myosins are the fastest processive motors known. This class functions in high-velocity cytoplasmic streaming in various plant cells from algae to angiosperms. The velocities at which they process are ten times faster than its closest class V homologues.</p> <p>Results</p> <p>To provide sequence determinants and structural rationale for the molecular mechanism of this fast pace myosin, we have compared the sequences from myosin class V and XI through Evolutionary Trace (ET) analysis. The current study identifies class-specific residues of myosin XI spread over the actin binding site, ATP binding site and light chain binding neck region. Sequences for ET analysis were accumulated from six plant genomes, using literature based text search and sequence searches, followed by triple validation <it>viz</it>. CDD search, string-based searches and phylogenetic clustering. We have identified nine myosin XI genes in sorghum and seven in grape by sequence searches. Both the plants possess one gene product each belonging to myosin type VIII as well. During this process, we have re-defined the gene boundaries for three sorghum myosin XI genes using fgenesh program.</p> <p>Conclusion</p> <p>Molecular modelling and subsequent analysis of putative interactions involving these class-specific residues suggest a structural basis for the molecular mechanism behind high velocity of plant myosin XI. We propose a model of a more flexible switch I region that contributes to faster ADP release leading to high velocity movement of the algal myosin XI.</p

    iMOTdb—a comprehensive collection of spatially interacting motifs in proteins

    Get PDF
    Realization of conserved residues that represent a protein family is crucial for clearer understanding of biological function as well as for the better recognition of additional members in sequence databases. Functionally important residues are recognized well due to their high degree of conservation in closely related sequences and are annotated in functional motif databases. Structural motifs are central to the integrity of the fold and require careful analysis for their identification. We report the availability of a database of spatially interacting motifs in single protein structures as well as those among distantly related protein structures that belong to a superfamily. Spatial interactions amongst conserved motifs are automatically measured using sequence similarity scores and distance calculations. Interactions between pairs of conserved motifs are described in the form of pseudoenergies. iMOTdb database provides information for 854 488 motifs corresponding to 60 849 protein structural domains and 22 648 protein structural entries

    Modelling multiple disulphide loop containing polypeptides by random conformation generation. The test cases of α-conotoxin GI and edothelin I

    Get PDF
    A general procedure for arriving at 3-D models of disulphiderich olypeptide systems based on the covalent cross-link constraints has been developed. The procedure, which has been coded as a computer program, RANMOD, assigns a large number of random, permitted backbone conformations to the polypeptide and identifies stereochemically acceptable structures as plausible models based on strainless disulphide bridge modelling. Disulphide bond modelling is performed using the procedure MODIP developed earlier, in connection with the choice of suitable sites where disulphide bonds could be engineered in proteins (Sowdhamini,R., Srinivasan,N., Shoichet,B., Santi,D.V., Ramakrishnan,C. and Balaram,P. (1989) Protein Engng, 3, 95-103). The method RANMOD has been tested on small disulphide loops and the structures compared against preferred backbone conformations derived from an analysis of putative disulphide subdatabase and model calculations. RANMOD has been applied to disulphiderich peptides and found to give rise to several stereochemically acceptable structures. The results obtained on the modelling of two test cases, a-conotoxin GI and endothelin I, are presented. Available NMR data suggest that such small systems exhibit conformational heterogeneity in solution. Hence, this approach for obtaining several distinct models is particularly attractive for the study of conformational excursions

    Structural determinants of binding and specificity in transforming growth factor-receptor interactions

    Get PDF
    Transforming growth factor (TGF-β) protein families are cytokines that occur as a large number of homologous proteins. Three major subgroups of these proteins with marked specificities for their receptors have been found-TGF-β, activin/inhibin, and bone morphogenic protein. Although structural information is available for some members of the TGF-β family of ligands and receptors, very little is known about the way these growth factors interact with the extracellular domains of their cell surface receptors, especially the type II receptor. In addition, the elements that are the determinants of binding and specificity of the ligands are poorly understood. The structure of the extracellular domain of the receptor is a three-finger fold similar to some toxin structures. Amino acid exchanges between multiply aligned homologous sequences of type II receptors point to a residue at the surface, specifically finger 1, as the determinant of ligand specificity and complex formation. The "knuckle" epitope of ligands was predicted to be the surface that interacts with the type II receptor. The residues on strands β2, β3, β7, β8 and the loop region joining β2 and β3 and joining β7 and β8 of the ligands were identified as determinants of binding and specificity. These results are supported by studies on the docking of the type II receptor to the ligand dimer-type I receptor complex

    HARMONY: a server for the assessment of protein structures

    Get PDF
    Protein structure validation is an important step in computational modeling and structure determination. Stereochemical assessment of protein structures examine internal parameters such as bond lengths and Ramachandran (φ,ψ) angles. Gross structure prediction methods such as inverse folding procedure and structure determination especially at low resolution can sometimes give rise to models that are incorrect due to assignment of misfolds or mistracing of electron density maps. Such errors are not reflected as strain in internal parameters. HARMONY is a procedure that examines the compatibility between the sequence and the structure of a protein by assigning scores to individual residues and their amino acid exchange patterns after considering their local environments. Local environments are described by the backbone conformation, solvent accessibility and hydrogen bonding patterns. We are now providing HARMONY through a web server such that users can submit their protein structure files and, if required, the alignment of homologous sequences. Scores are mapped on the structure for subsequent examination that is useful to also recognize regions of possible local errors in protein structures. HARMONY server is located a

    Cascade PSI-BLAST web server: a remote homology search tool for relating protein domains

    Get PDF
    Owing to high evolutionary divergence, it is not always possible to identify distantly related protein domains by sequence search techniques. Intermediate sequences possess sequence features of more than one protein and facilitate detection of remotely related proteins. We have demonstrated recently the employment of Cascade PSI-BLAST where we perform PSI-BLAST for many ‘generations’, initiating searches from new homologues as well. Such a rigorous propagation through generations of PSI-BLAST employs effectively the role of intermediates in detecting distant similarities between proteins. This approach has been tested on a large number of folds and its performance in detecting superfamily level relationships is ∼35% better than simple PSI-BLAST searches. We present a web server for this search method that permits users to perform Cascade PSI-BLAST searches against the Pfam, SCOP and SwissProt databases. The URL for this server is

    A machine learning approach for the identification of odorant binding proteins from sequence-derived properties

    Get PDF
    Background: Odorant binding proteins (OBPs) are believed to shuttle odorants from the environment to the underlying odorant receptors, for which they could potentially serve as odorant presenters. Although several sequence based search methods have been exploited for protein family prediction, less effort has been devoted to the prediction of OBPs from sequence data and this area is more challenging due to poor sequence identity between these proteins. Results: In this paper, we propose a new algorithm that uses Regularized Least Squares Classifier (RLSC) in conjunction with multiple physicochemical properties of amino acids to predict odorantbinding proteins. The algorithm was applied to the dataset derived from Pfam and GenDiS database and we obtained overall prediction accuracy of 97.7% (94.5% and 98.4% for positive and negative classes respectively). Conclusion: Our study suggests that RLSC is potentially useful for predicting the odorant binding proteins from sequence-derived properties irrespective of sequence similarity. Our method predicts 92.8% of 56 odorant binding proteins non-homologous to any protein in the swissprot database and 97.1% of the 414 independent dataset proteins, suggesting the usefulness of RLSC method for facilitating the prediction of odorant binding proteins from sequence information

    Analysis on conservation of disulphide bonds and their structural features in homologous protein domain families

    Get PDF
    International audienceBackground: Disulphide bridges are well known to play key roles in stability, folding and functions of proteins. Introduction or deletion of disulphides by site-directed mutagenesis have produced varying effects on stability and folding depending upon the protein and location of disulphide in the 3-D structure. Given the lack of complete understanding it is worthwhile to learn from an analysis of extent of conservation of disulphides in homologous proteins. We have also addressed the question of what structural interactions replaces a disulphide in a homologue in another homologue.Results: Using a dataset involving 34,752 pairwise comparisons of homologous protein domains corresponding to 300 protein domain families of known 3-D structures, we provide a comprehensive analysis of extent of conservation of disulphide bridges and their structural features. We report that only 54% of all the disulphide bonds compared between the homologous pairs are conserved, even if, a small fraction of the non-conserved disulphides do include cytoplasmic proteins. Also, only about one fourth of the distinct disulphides are conserved in all the members in protein families. We note that while conservation of disulphide is common in many families, disulphide bond mutations are quite prevalent. Interestingly, we note that there is no clear relationship between sequence identity between two homologous proteins and disulphide bond conservation. Our analysis on structural features at the sites where cysteines forming disulphide in one homologue are replaced by non-Cys residues show that the elimination of a disulphide in a homologue need not always result in stabilizing interactions between equivalent residues.Conclusion: We observe that in the homologous proteins, disulphide bonds are conserved only to a modest extent. Very interestingly, we note that extent of conservation of disulphide in homologous proteins is unrelated to the overall sequence identity between homologues. The non-conserved disulphides are often associated with variable structural features that were recruited to be associated with differentiation or specialisation of protein function
    corecore